
ARCHITECTURE AND CAPABILITIES OF A DATA WAREHOUSE FOR ATM
RESEARCH

Michelle M. Eshow, NASA Ames Research Center, Moffett Field, CA
Max Lui and Shubha Ranjan, Intrinsyx Corporation, Moffett Field, CA

Abstract

This paper describes the design, implementation,
and use of a data warehouse that supports air traffic
management (ATM) research at NASA’s Ames
Research Center. The data warehouse, dubbed
Sherlock, has been in development since 2009 and is
a crucial piece of the ATM research infrastructure
used by Ames and its partners. Sherlock comprises
several components, including a database, a web-
based user interface, and supplementary services for
query and visualization. The information stored
includes raw data collected from the National
Airspace System (NAS), parsed and processed data,
derived data, and reports derived from pre-defined
queries. The raw data include a variety of flight
information from live streams of FAA operational
systems, weather observations and forecasts, and
NAS advisories and statistics. The modified data
comprise parsed and merged data sources and
metadata, enabling parameterized searches for data of
interest. The derived data represent the results of
research analyses deemed to be of significant interest
to a wide cross-section of users. Sherlock is
implemented on an Oracle 11g database, with
supplemental services built on open-source packages
and custom software. It contains over 20 TB of data
spanning several years, and more data are added
daily. It has supported several research studies, such
as finding similar days in the NAS and predicting
imposition of traffic flow management restrictions.
Planned enhancements include integrated search
across data sources and the capability for large-scale
analytics.

Introduction
NASA Ames has a long history of productive

research in ATM in the United States (US),
particularly in the areas of decision support tools,
automation, and simulation [1]. The success of
Ames’s ATM research has depended on access to
actual data describing the NAS, including
information about flights in the system, weather

observations and forecasts, and advisory data issued
by the FAA in response to current traffic, weather, or
other conditions. NASA Ames is unique outside the
FAA in that it receives live air traffic feeds from a
variety of operational facilities, including Air Route
Traffic Control Centers (Centers), Terminal Radar
Approach Controls (TRACONs), and the Air Traffic
Control System Command Center (ATCSCC). These
data feeds drive the real-time decision support tools
(DST) that Ames has developed [1]. They are also
used for playback into the DST’s, analysis,
behavioral models, and as a baseline for developing
simulation scenarios. Before the advent of Sherlock,
the data feeds were archived to a file system on an as-
requested basis. There was no consistent strategy for
data archiving, nor was there a centralized storage
location. The personnel recording the data supported
each of the many recording requests from researchers
individually. Knowledge about the data was
transmitted informally, with little opportunity for
discovery by others.

In 2008, a small team of engineers within the
ATM group at Ames undertook the task of designing
and creating a data warehouse to support ATM
researchers at Ames and across NASA. The
objectives at the time were to create a centralized
repository of all relevant ATM data and to enable
NASA researchers to query, view, and extract the
data for their diverse purposes. As is standard
practice, the warehouse would be nonvolatile and
time variant, in that users would not be able to
modify the data and new data would be added
continuously. Data warehouses frequently serve to
integrate data using a single data schema, but because
of the challenging nature of integrating ATM data
sources as diverse as aircraft position and storm
locations, this aspect was taken into account in the
design but not pursued at the outset of the project.

Sherlock’s development proceeded in an
iterative fashion, with each successive release giving
meaningful new capabilities to users. The objective
of the first release was modest: to store all ATM data

in a consistent manner and to make it available to
authorized users as ‘raw’ files, in day-long blocks,
from both a file system and a web-based interface.
Additionally, a small amount of metadata was
specified and generated to quantify the completeness
of the data. Users were able to search for data by
date, airport or other facility, and type. They were
able to view the completeness of the files and
download acceptable ones for further use. Achieving
these capabilities required re-engineering the existing
data collection and archiving process to be fault-
tolerant and as reliable as possible. It also required
design of a directory hierarchy, file naming
conventions, and a simple database schema. Finally,
it required implementation of a web-based user
interface.

The second release included storing some of the
data sources according to a traditional database
schema, which required that the data content be
parsed and accessible through queries. The choice of
which sources were parsed was determined by user
needs and the difficulties of parsing the source data.
The parsed sources help researchers find time periods
of interest across the data. For example, a user could
search for desired airport configurations for a range
of dates; then among those dates search for highest
arrival rates; and then search for the highest arrival
delays. Particularly useful analyses created and
carried out by individuals were moved into the
warehouse to be updated continuously for use by
anyone. Finally, software tools were made available
to convert existing data into normalized databases
and other data formats such as Keyhole Markup
Language (KML) – the language used for such
applications as Google Earth [2].

The third release addressed the acquisition and
processing of additional data sources, including
weather forecasts and a high-rate national air traffic
feed. It also included the creation of services enabling
query of weather and geographic data via software
interfaces rather than by human input. A conceptual
drawing of Sherlock is shown in Figure 1.

To date, Sherlock contains eight frequently
accessed data source types in ‘raw’ format, eight
types that are processed and placed in traditional
database tables, one daily shared analysis, and three
post-processing tools. Its data have been used in
many research analyses and technical papers. The

balance of this paper describes Sherlock’s data,
design, usage, and future plans.

Figure 1. Overall Sherlock Architecture

Other ATM Data Warehousing Efforts
Other ATM-related organizations have built

their own data archives, analysis tools, and reporting
systems, but most are not widely accessible or do not
have published descriptions. Perhaps the best-known
ATM warehouse in the US is the Performance Data
Analysis Reporting System (PDARS) [3]. At its
lowest layer, PDARS collects flight plan and track
data from nearly every facility in the US, including
unique facilities in Alaska and Hawaii. PDARS also
collects many weather products. It performs
extensive data processing and provides over one
thousand pre-defined reports daily to FAA users,
from delay statistics to noise profiles. PDARS
enables the FAA to assess overall NAS performance
and make informed decisions about future operations.
PDARS is an extremely powerful system, but it is not
available for general NASA use due to security and
design restrictions. It was, therefore, not suitable for
NASA’s research needs.

Sherlock Data Sources

Data Sources and Types
Data for Sherlock comes primarily from the

FAA and the National Oceanic and Atmospheric
Administration (NOAA). NASA has agreements with
both organizations for proper use and dissemination
of the data. Live flight plan and track data are not
shared outside an isolated network; only archived
data are available in the warehouse. Access to the

Data
Feeds

Web
Sites

Oracle
Database

Web User
Interface Network

File Server

Services
Interface

(API)

Post-
Processing

Tools

archived data is limited to NASA and partners who
have acquired NASA credentials. Only partners with
legitimate needs and signed data usage agreements
may access the archived data. The data sources are
shown in Table 1 and discussed in more detail later in
this paper.

Table 1. Sherlock Data Sources

Source Name Description Acquisition
ATCSCC
Advisories [4]

Traffic
management
advisories issued
by System
Command
Center, in HTML
format

Retrieved from
FAA website
daily.

Airline
Situation
Display to
Industry
(ASDI) [5]

National air
traffic, updated
once per minute,
in a compressed
Extensible
Markup
Language
(XML) feed

FAA product
streamed over
Virtual Private
Network
(VPN),
recorded in
one-minute-
long files.

Air Route
Traffic Control
Center
(Center)

Flight plan and
track data from a
Center computer,
distributed
through a
gateway, binary
format

Streamed over
dedicated
network from
FAA. Recorded
as one file per
day per Center.

Corridor
Integrated
Weather
Service
(CIWS) [6]

Current and
forecast
precipitation and
echo tops for
continental US,
in binary format

Retrieved from
FAA site over
VPN, multiple
files every 2.5
minutes.

Center-
TRACON
Automation
System
(CTAS) [1]

Custom file
generated at
Ames, used to
record merged
Center and
TRACON data,
including
automation data,
in text format

Recorded
continuously
into one file
per day per
Center-
TRACON
combination.

Source Name Description Acquisition
Exelis
Commercial
Track Feed [7]

National air
traffic feed,
updated every
five seconds or
more, XML
format

Streamed over
VPN for six
weeks total in
2013, recorded
into one-
minute-long
files.

Meteorological
Aerodrome
Reports
(METAR) [8]

Hourly surface
weather
observations
from hundreds of
airports in US, in
text format

Retrieved from
NOAA file
transfer
protocol (FTP)
site hourly.

The
Operations
Network
(OPSNET) [9]

FAA's aggregate
system
performance data
for US, by airport
and day,
including delay
by cause, in
comma-separated
value (CSV)
format

Retrieved from
FAA OPSNET
website
monthly.

Aircraft
Reports
[10][11]

Pilot and aircraft
reports of in-
flight weather
conditions across
US, in text
format

Retrieved from
NOAA website
daily.

Rapid Refresh
(RR) Weather
Forecast [12]

NOAA weather
forecasts,
including wind,
temperature, and
pressure,
published in
GRIdded Binary
(GRIB) format

Retrieved from
NOAA FTP
site hourly.

Terminal
Aerodrome
Forecast
(TAF) [13]

Forecasts of
airport weather,
published every
six hours for
many airports, in
text format

Retrieved from
NOAA FTP
site hourly.

Source Name Description Acquisition
Time-based
Flow
Management
(TBFM)
metering
information
[14]

FAA’s daily
summaries of
metering usage
and related data
extracted from
TBFM software,
in CSV and
HTML format

Delivered from
FAA analysis
system once
per day.

TRACON Flight plan and
track data from
TRACON
computers,
through a
gateway, in
binary format

Streamed over
dedicated
network, one
stream per
TRACON.

Data Management
Key to the success of any data warehouse is

reliable and robust collection of data on a continuous
basis. For each data source identified in Table 1,
Sherlock has an automated process to connect to the
source, receive or retrieve the data, and write it to a
central file system. In some cases there is a dedicated
or private virtual network connection receiving a
continuous feed, as is true for the Center and
TRACON flight data. In other cases, especially for
weather data, polling programs connect to a remote
FTP server at defined intervals and look for new
files. In all cases, the retrieval software runs on the
Ames ATM computer network to bring the data
across Linux servers to a network file system (NFS).
Separate programs monitor the data collection of
each source to detect missing data, such as a break in
a continuous stream or a missing file on an FTP site.
When a break in the data is detected, the scripts send
email to appropriate personnel and catalog the
missing data. At the end of each day, other scripts
acquire missing files from remote servers, for data
sources that have some level of archiving. Finally,
scripts run overnight to rename the files according to
Sherlock’s naming conventions and move the data to
a permanent place in the file system’s directory
hierarchy. Because of the monitoring and recovery
scripts noted above, there is typically a one-day delay
between the data arriving at Ames and it being
available through the web application.

Data Extraction, Transformation, and
Loading (ETL)

After the data are collected, they must be loaded
into or referenced by the Oracle database component
of the warehouse. Oracle was selected as the database
application because its table partitioning feature
allows fast queries across large amounts of data, and
because it allows many database operations to run in
parallel (e.g., data inserts and index creation). The
Oracle Developer Data Modeler application is used to
model and maintain the database tables.

The data loading step is typically called
“extraction, transformation, and loading”, or ETL. In
most cases, Sherlock’s ETL process is implemented
using Pentaho Data Integration (PDI), an open source
application written in Java [15]. The ETL software
generated by PDI is metadata driven. A developer
uses PDI to construct the software by connecting
multiple plug-and-play steps, using the PDI graphical
user interface. PDI can use parallel data processing to
execute the ETL software, which is ideal when
running on a computer with multiple CPU cores.
Figure 2 shows a graphical presentation of part of the
ETL process to decode and load METAR data into a
database, per the methods described in [16].

Figure 2. ETL Process for METAR in PDI

The ETL software first loads data into a staging
database. The input data source may be a file, another
database, a web page, or a web service call. The data
in the staging database may be further transformed
into a Star Schema form [17], a modeling approach

optimized for ad-hoc user queries of large amounts of
data. Figure 3 shows the daily aggregated Star
Schema form for METAR. The dimension tables
D_WX_PHENOMENA, D_DATE, and
D_AIRPORT store descriptive data about weather
phenomena, dates, and airports, respectively. The fact
table F_METAR_REPORT_DAILY_AGG stores the
daily aggregated facts (surface-weather summary
observed at an airport on a given date).

Figure 3. Star Schema for METAR

Data Access in Sherlock
All data in the database are accessible by

Sherlock’s web application, which is built upon
Oracle Application Express (APEX). APEX was
selected because it promised rapid web application
development, and its end-user reporting capability
met early requirements for ad-hoc filtering, sorting,
grouping, and charting.

Figure 4 illustrates part of the main search page,
where users look for data by source and dates. In this
example, the user is interested in the CIWS, CTAS,
and RR data sources. The user has selected sub-sets
of each of those sources, as indicated by the
selections highlighted in grey.

Figure 4. Same Query Across Sources

Figure 5 shows the query page for METAR
summary data. Since METAR is a parsed source, the
content of the weather reports is available for query.
The APEX interface for METAR was designed for
search by airports, weather conditions, and dates. In
this example, the user has searched for Fog
conditions at San Francisco International Airport
from January 1st, 2014 to June 28th, 2014. The
columns displayed in this example include the
‘worst’ conditions for that day, including the lowest
visibility. Users may select or deselect every
parameter in the data for display. In addition, the
users may perform additional formatting, filtering,
and computation on the results. Users may download
the resulting data tables in CSV or HTML format.
APEX also provides a variety of charting options

Figure 5. User Query of METAR Data

Date Cart for Date-Related Search
One of the main use cases for Sherlock is to find

data with traffic or weather conditions of interest.
The first search criterion is a date range, and this can
be specified over the entire coverage period of data
for a source. While examining sources across a range
of dates, a user may find discrete dates with
conditions of interest, such as days of high delay due
to severe weather and days of low delays in the same
geographical region. These insights are gained by
successive searches across various dates. To help the
users save dates of interest as they find them, the
interface provides a Date Cart that is similar to a
shopping cart used in many online commerce web
sites. The user may add a range of dates or individual
dates to the date cart from any search result. The
dates in the cart can be used subsequently as a search
criterion throughout the web application.

Figure 6 shows the results of searching
OPSNET data for the most weather-impacted days at
Dallas-Ft. Worth Airport (DFW), between January
1st, 2010 and May 31st, 2014. The user has selected
the top ten dates for further use. After the user clicks

“Add Dates to Cart,” those dates are available for all
other searches. Figure 7 shows use of the Date Cart
as a search criterion on another page.

Figure 6. Adding Weather-Impacted Dates to Cart

Figure 7. Date Cart as a Search Parameter

File Metadata and File Download
As mentioned previously, the recording of

streaming data is subject to occasional outages. For
example, the network connection can be disrupted
upstream, or the servers may be shut down for
unplanned maintenance. Because the data are not
operationally critical, there is currently no failover
recording capability and no contingency for
recovering any lost live-stream data. To aid a user in
assessing the value of data for a given day, the
database stores metadata regarding each file’s
availability and completeness. These metadata are
presented with search results for the air traffic and
weather data sources. Below are the metrics of
completeness for the data sources:

• ASDI: 1440 one-minute files per day

• CIWS: 576 sets of files per day (one set of
4 files every 2.5 mins)

• CTAS, Center, TRACON: Internal
recording time stamps spanning 24 hours

• METAR: 24 files per day
• RR: a set of five files per hour
A user can conduct a ‘completeness search’ over

a range of dates or across the dates stored in the date
cart. It should be noted that data integrity is not
currently verified; that is an area for future work.

Figure 8 shows a sample data search query result
in which there are some short (1-3 minute) lapses in
ASDI data. These are highlighted in red. If the data
lapses occurred during non-peak air traffic, a user
may still find the data usable. A separate window
enables the user to see what time periods are missing.
Knowing more about the missing data allows the user
to make an informed decision about whether to use
those days or choose others.

Figure 8. Data Completeness on Search

To download files of interest, the user selects the
check-box beside the corresponding file(s) then
clicks the "Download Selected Files" button. The
web application will then generate an archive of all
selected files and present it to be saved from the
user's browser.

Data Stored in Database Tables
The following sections describe the data sources

that are stored in database tables rather than solely as
data files in their original format. The user may query
within each source using the built-in capabilities of
the APEX interface. The user may also search across
sources by constructing complex queries, but this
requires knowledge of the database schema and use
of Structured Query Language (SQL).

OPSNET
OPSNET [9] provides aggregated data about

NAS air traffic operations and delays. Sherlock stores
the OPSNET data from the Aviation System
Performance Metrics – 77 airports [18] beginning
January 1st, 2007. Figure 9 shows the three days with
the highest total delays at Newark Liberty Airport
between May 1st, 2013 and April 30th, 2014. Users
can retrieve this data for analysis or insert these dates
into their Date Cart for wider searches. OPSNET data
are also used in computing the Weather Impacted
Traffic Index as described later in this paper.

Figure 9. Days of Highest Delay at Newark
Airport

METAR
A METAR [8] report contains weather

information observed by an automated or manual
reporting station at an airport, and covers the
immediate vicinity of that airport. A regular report is
created every hour, and a special report is generated
when there is a significant change in conditions. Each
report has two sections of text: a Body and Remarks.
Sherlock collects the METAR reports from a NOAA
FTP site, with the Weather Underground website as
an alternative source. METAR reports from 267
airports are decoded and stored on a daily basis,
using the methods described in [16].

Time-based Flow Management Information
Operational TBFM data are extracted from all

20 Centers and the TRACONs that run the TBFM
software [14]. These data help researchers identify
traffic conditions of interest. They may query the
following TBFM data:

• Airport flow configuration, including
runway landing direction and active
runways.

• Airport landing summary, including total
aircraft landed, average landing per hour,
and average landing per 10-minute or 15-
minute intervals.

• Metering usage, including when arrival
metering started and ended.

Weather Impacted Traffic Index
Based on several of its sources, Sherlock

computes an hourly Weather-Impacted Traffic Index
(WITI) [19] for each Center in the NAS. WITI is
computed because of its wide utility for classifying
traffic conditions. This processing uses ASDI and
CIWS files directly. OPSNET data are used to choose
ASDI low-weather-impact days for comparison with
the subject day’s weather. WITI is a measure of the
effects weather had on en-route traffic flow over an
hour or a day. An Hourly WITI having a value of one
is defined as one aircraft-minute of delay that was
incurred due to a level of precipitation that a pilot
would likely avoid using flight path changes.

ATCSCC Advisory
Advisories issued by the FAA's ATCSCC may

impact air traffic, especially when the advisory is a
Ground Delay Program, Airspace Flow Program,
Ground Stop, or Reroute. The advisory data are
parsed and stored to allow users to fully query all of
the associated parameters (e.g., impacting condition
such as thunderstorms, and affected facilities such as
airports or Centers). The advisory data source is also
key to understanding air traffic flows when playing
back historical data.

ASDI Track Analysis
The ASDI data feed is streamed and recorded in

Sherlock in its native format, in one-minute file
intervals. FAA creates the ASDI feed from many
track sources, including Center and TRACON

facilities. Each day of data contains about five
million tracks. During ETL processing, all of the
tracks are aggregated based on their track sources to
compute the number of tracks received every hour.
Users may then query for and rank hourly traffic
levels at selected Centers or TRACONS. Again, the
purpose of this processing is to help researchers find
traffic conditions of interest for further analysis.

Aircraft Reports
Aircraft Reports are made up of Air Reports

(AIREP) and Pilot Reports (PIREP) [10][11]. Both
are available from the National Weather Service
ADDS Data-Services Text-Data-Server website [20].
These reports come from pilots and describe their
flight’s position and the presence or absence of
adverse weather conditions such as turbulence, icing,
visibility, and wind. ETL scripts parse the message
text before storing the parsed data into the database.
Sherlock users can query and filter historical aircraft
reports to assess the weather conditions encountered
by en-route flights, and to compare measurements
provided by weather models against those from the
pilot reports.

Exelis Flight Data
Exelis NextGen Surveillance Data Services [7]

provides a commercial real-time feed of all
transponding aircraft in the NAS as well as ground
tracks for many airports. The track data comes from
FAA facilities and from Automatic Dependent
Surveillance-Broadcast (ADS-B) signals, where
available. To support creation of simulation scenarios
for unmanned aircraft system research, Ames
partnered with Exelis to purchase a 50-day
subscription to the data stream. Software at Ames
recorded the feed in one-minute-long XML files. The
team wrote extensive processing code to parse, de-
duplicate and clean the data. As a result, 9.6 million
flight information records and 3.4 billion track
records are available for query, charting and
download from Sherlock’s interface. To allow
existing NASA tools and applications to read the
Exelis data, the team developed software to support
several export formats: CTAS Cmsim (to be
described later in this paper), High Level
Architecture (HLA) Comma-Separated Values (CSV)
[21], and KML [2]. Figure 10 shows how a user can
define data export criteria based on spatial and time
boundary of tracks, call-signs, ADS-B transponder

codes, aircraft types, etc. Figure 11 shows the
playback of a few tracks and track histories at DFW
using Google Earth; this allows a quick visualization
of the nature of the flight and track data in an export
file.

Figure 10. Search Page for Exelis Track Data

Figure 11. Exelis Tracks on Google Earth

CTAS Data File Parsing
NASA's Center-TRACON Automation System

(CTAS) [1] is a large software baseline that embodies
a collection of real-time, controller-centered ATM
decision support tools. The currently fielded TBFM
system began as a component of CTAS in the 1990’s
called the Traffic Management Advisor [22]. To
support development, a customized data-recording
format was created to store data from CTAS for
analysis and playback. This data type is called the
“Cmsim” file. The Cmsim file is text-based and
contains 40 different record types reflecting both
flight data that comes into CTAS from FAA systems,
and data internally generated by CTAS based on its
predictions. The records have structured as well as
unstructured text fields. Each Cmsim file recorded
for Sherlock covers a 24-hour period for a given
combination of one Center and one TRACON. The
types of records include track and flight plan data,
estimated and scheduled times of arrival, assigned
meter fix and runway, and pointers to any weather
files that were in use during the recording. A 24-hour
Cmsim file holds 4 to 10 million unique records,
depending on the connected ATC facilities and level
of traffic.

Because the Cmsim file format is used so widely
by Ames researchers, the Sherlock team wrote a
program to read and process the records into other
formats amenable to analysis and visualization. The
Java-based Cmsim Parser tool is able to quickly read
a Cmsim file of up to 15 million records into local
memory, then process the data and export it to many
different formats, including: a subsetted Cmsim file
(described below), a MATLAB file, a CSV file, or
database tables readable by all common database
applications. The database export also provides a
means to merge several days of data together and
query across them.

The Cmsim Parser’s web interface enables the
user to specify complex selection and filtering criteria
for the data, as well as choose among output formats.
The program can be used in a standalone, interface-
driven mode, by terminal command line, or by other
programs via an application programming interface
(API). The uniquely powerful aspect of the Parser is
that it is metadata driven; its knowledge of the
Cmsim file format is determined completely by an
external XML representation of the records, rather
than by any record-specific coding within the

program. A truncated sample of the XML
specification is presented in Figure 12.

In addition to parsing the data for analysis, a
popular use of the program is to generate a “mini
Cmsim” file. Users may pick a subset of flights from
the original file and create a smaller one that retains
all of the required syntax of the original. They may
then play back the file into CTAS, to more easily
explore system behavior for those few flights.

Figure 12. Sample XML Representation

Track Visualizer
Building on the Cmsim Parser, the Track

Visualizer is a web application that generates KML
output to display flight tracks on Google Earth or any
other geospatially-enabled browser. It uses the
Cmsim Parser API to parse a user-selected Cmsim
file. The visualizer is built using HTML5 [23] and
operates on any computer or browser supported by
the Google Earth plug-in. The Track Visualizer
connects to the Oracle database, so users can select
any stored Cmsim file. Users may also upload their
own Cmsim file.

The Track Visualizer provides several KML
generation options, including display of aircraft call

sign and color-coding of flight category (arrival,
departure, etc.). Users may choose any flights of
interest for KML processing. Their chosen flights
then display in the browser using the Google Earth
plugin. The generated track files can also be
downloaded for further analysis, and airspace
boundaries are provided as a layer. Figure 13 shows
an example of a full playback of two sets of track
data on Google Earth. The KML for each track point
includes information about the flight, and this is
visible when the user clicks on the point.

Figure 13. Example of Rendering of KML Output

Geospatial Service
To support geospatially oriented queries,

visualization, and analysis, the team deployed a
geospatial service using open-source tools. The
service’s layered architecture is illustrated in Figure
14. The PostgreSQL open-source database [24] is
augmented with the PostGIS [25] extension to
provide a variety of spatial features compliant with
OpenGIS [26] standards. This integration comprises
the GeoServer open-source server [27]. The service’s
database is populated with a sub-set of the airspace
description data stored in Sherlock, including
polygon representations of Center and sector
boundaries, line descriptions of airways, and point
descriptions of fixes, airports, and runways. In
addition, the PostGIS database stores a polygonal
representation of CIWS storm data that considers
pilot interaction with the airspace around storm cells
called the Convective Weather Avoidance Model
(CWAM) [28]. These data are updated regularly to
capture any changes from the file system.

The service provides multiple forms of
interaction. Programs can connect to the database and
run queries to answer such questions as “which
sector(s) contain this storm polygon” or “what is the
intersection point between these two airways”. These
queries are made possible by the function, operator,
and index extensions of PostGIS.

Figure 14. Geospatial Service Layered
Architecture

The GeoServer enables users to browse the
various stored data types in both visual and text
forms, and download the data in a preferred format.
One example use case is to download CWAM data as
a KML layer and then overlay it with flight tracks on
Google Earth. The GeoServer provides airspace
definition data in 20 possible formats including CSV,
KML, and images. This is done via a complex query
known as a Web Map Service (WMS) query. Figure
15 illustrates the results of a simple query of airspace
fixes around Los Angeles International Airport
(LAX), on Google Earth.

Figure 15. Fixes around LAX, retrieved from
GeoServer, displayed on Google Earth

Weather Server
Weather conditions are often critical to ATM

analysis. Sherlock stores large amounts of binary
weather forecast data, including Rapid Refresh and
CIWS. At times, researchers want to find particular
wind or storm conditions, which requires delving into
the complex data structures within the files. Since the
files are in standard gridded formats, open source
tools exist to process and query them. The team has
implemented a weather server using the THREDDS
Data Server (TDS) open source software [29] to
enable this type of data query.

The THREDDS server installation comprises
multiple virtual machines hosted in the ATM Linux
network. It runs on a load-balanced, J2EE- compliant
web server. It uses four nodes for performance and
scalability to support the volume of data that
comprise the weather datasets.

TDS allows users to find weather datasets that
are pertinent to their specific research needs, access
the data, and use it without necessarily downloading
the entire file to their local system. TDS has
integrated viewers, both web-based and Java-based,
for viewing the data in various gridded data formats.
TDS can serve the contents of the datasets, in
addition to providing catalogs of all the files and
metadata for them. TDS uses the Unidata [30]
Common Data Model (CDM) to read datasets in
various formats; it serves them through OPeNDAP
(Open-source Project for a Network Data Access
Protocol) [31].

The server can be queried with hyper-text
transfer protocol (HTTP) calls, which can become
complex and are intended to be generated as the user
navigates the system or by an external application.
One actual use case was to search for high cross-
winds over a fix along an arrival route. Using the
TDS-defined URL specification, a simple utility was
created to iterate over a time/date and create a table
of winds over the fix by time. The researcher quickly
identified a Rapid Refresh weather file containing an
acceptable wind magnitude and direction over the fix.

The stored weather data are served using
standard web services including the Open Geospatial
Consortium (OGC) Web Coverage Service (WCS)
and the WMS. The server can provide subsets of the
digital data in various formats using NetCDF sub-
setting, which is another web service. For example, a

GeoServer: View, Edit, Export
Geospatial Data

PostgreSQL with PostGIS
Extension: Geospatial Database

Warehouse File System: Airspace
Descriptions, Storm Polygons

user may specify a bounding box to retrieve storm
data over a certain geographic region. Similarly the
user may specify a subset of parameters to be
retrieved, such as freezing rain or wind vectors at a
given location and time. The sub-set preserves the
original resolution.

The weather server can generate visualizations
in all standard image formats or as a KML layer.
Several open-source web-based tools have been
added to allow the user to specify distinct layers,
spatial reference system, geographic area, and other
parameters for the returned map format. Figure 16
shows a wind vector visualization using the ‘wind at
maximum wind level’ parameter from a Rapid
Refresh file. The wind barbs indicate direction, while
the color indicates speed.

Figure 16. Wind vector image from WMS query

Sherlock Usage Examples
In addition to daily routine usage, NASA and

affiliated researchers have used Sherlock in a variety
of studies leading to published works. This section
summarizes a selection of such use cases.

A series of studies have applied data mining
techniques to identify past occurrences of similar
days in the NAS, to enhance FAA Traffic Flow
Management (TFM) decision-making when such
days occur in the future. Grabbe et al. [32] mined
data about FAA-imposed Ground Delay Programs
(GDPs) to find clusters across GDP locations and
causes. This work used the METAR and ATCSCC
Advisories sources from Sherlock. Another effort
[33] used the derived WITI data product to identify
six dominant weather patterns across the US, while

the ATCSCC Advisories source helped to correlate
re-route advisories with those weather patterns.

Researchers extended this work on analyzing
similar days to identify clusters of hours for which
the probability of imposing a GDP was similar, for
the Chicago O’Hare and Newark Liberty airports
[34]. This study used the ATCSCC Advisories and
CIWS data sources.

Bloem et al. [35] created behavioral cloning and
inverse reinforcement learning models to predict
hourly GDPs at San Francisco and Newark Liberty
airports. This work used Sherlock’s METAR and
TAF data.

As a final example, all of the development of the
real-time Dynamic Weather Routing Tool [36] has
depended heavily on Sherlock, especially to retrieve
historical CIWS and Cmsim data for playback into
the software, for verification, and for examination of
situations reported by airline users.

Future Directions
Sherlock is an important infrastructural element

for NASA’s ATM research community. There are
several areas of development that would increase its
utility. First, the flight plan and track data should be
processed or at least correlated into end-to-end flight
records for each flight. This is a challenging task that
requires merging data from many facilities into a
single set of records per aircraft, while accounting for
overlapping coverage areas, properly associating
aircraft across facilities, and linking a particular track
to the flight plan in effect at the time. ASDI data
can’t be used for all research purposes because of its
inherent data filtering and because its one-minute
update rate is not sufficiently frequent for detailed
analyses. To be even more useful, metadata should be
computed for each flight’s track data, for example,
actual landing runway, average in-trail spacing, and
arrival meter fix crossing time. In addition,
correlation of track data with automation system
computations, such as trajectory predictions, has been
identified as a useful capability.

The second planned enhancement is to provide
more comprehensive data integration across
Sherlock’s multiple data sources. Toward this goal, a
semantic model of ATM-related concepts has been
constructed to integrate data from selected data
sources, using an ontological approach [37]. Once

completed, this work will enable cross-source queries
to return results based on inferred relationships that
are not explicit in the data.

The third planned enhancement is to add the
capability for Big Data analytics of the type
described by Mayer-Schonberger and Cukier [38].
With a functioning Big Data capability, sophisticated
data mining and machine learning algorithms could
be executed directly in Sherlock, without the need for
researchers to download and process the data on their
own computers. Efforts are underway to design this
capability, and a prototype has been developed.
Implementing Big Data depends on successful
creation of the parsed end-to-end track data described
as the first enhancement.

References
[1] Schroeder, J. A., 2009, "A Perspective on NASA

Ames Air Traffic Management Research,"
AIAA-2009-7054, Hilton Head, SC, AIAA
Aviation, Technology, Integration, and
Operations (ATIO) Conference and Aircraft
Noise and Emissions Reduction Symposium
(ANERS).

[2] KML Standard, refer to:
http://www.opengeospatial.org/standards/kml/

[3] Browder, Jeff, R. Gutterud, and J. Schade, 2010,
“Performance Data Analysis Reporting System
(PDARS) – A Valuable Addition to FAA
Managers’ Toolsets”, Vol. 8 No. 6, Journal of the
FAA Managers Association.

[4] FAA ATC System Command Center Advisories
database:
http://www.fly.faa.gov/adv/advADB.jsp

[5] Anon., 2000, “Aircraft Situation Display To
Industry: Functional Description and Interface
Control Document,” Report no. ASDI-FD-001,
Cambridge, MA, Volpe Center Automation
Applications Division.

[6] Evans, Jim, Kathleen Carusone, Marilyn
Wolfson, Bradley Crowe, Darin Meyer, and
Diana Klingle-Wilson, 2001, "The Corridor
Integrated Weather System (CIWS),” Portland,
OR, 10th Conference on Aviation, Range, and
Aerospace Meteorology.

[7] Exelis NextGen Data Subscription,
http://www.exelisinc.com/solutions/nextgendata/
Pages/default.aspx

[8] Anon., 2005, “Federal Meteorological Handbook
No. 1: Surface Weather Observations and
Reports,” FCM-H1-2005, Washington, D.C.,
NOAA.

[9] OPSNET Description:
http://aspmhelp.faa.gov/index.php/OPSNET_Ma
nual

[10] Anon., 2014, “FAA Order JO 7110.10 –
Flight Services,” Chapter 9, Section 2: Pilot
Weather Report (UA/UUA), FAA.

[11] Anon., 2014, “FAA ORDER JO 7110.10X10
– Flight Services,” Chapter 7, Section 1: AIREPs
(POSITION REPORTS), FAA.

[12] Alexander, Curtis R., S. S. Weygandt, S. G.
Benjamin, T. G. Smirnova, J. M. Brown, P.
Hofmann, and E. P. James, 2011, “The High
Resolution Rapid Refresh (HRRR): Recent and
future enhancements, time-lagged ensembling,
and 2010 forecast evaluation activities,” Seattle,
WA, American Meteorological Society 91st
Annual Meeting.

[13] TAF Description:
http://en.wikipedia.org/wiki/Terminal_aerodrome
_forecast

[14] TBFM Website: FAA TBFM Site:
http://www.faa.gov/nextgen/snapshots/portfolios/
?portfolioId=11

[15] Refer to
http://www.pentaho.com/product/data-integration

[16] Lui, Max, 2014, “Complete Decoding and
Reporting of Aviation Routine Weather Report
(METAR),” TM-218385, NASA Technical
Memorandum, NASA.

[17] Kimball, Ralph, Margy Ross, April 2002,
“The Data Warehouse Toolkit: The Complete
Guide to Dimensional Modeling, 2nd Edition,“
Wiley Computer Publishing.

[18] Aviation System Performance Metrics 77
Airports,
http://aspmhelp.faa.gov/index.php/ASPM_Airpor
ts

[19] Sridhar, Banavar, Sean S.M. Swei, 2007,
“Classification and Computation of Aggregate
Delay Using Center-based Weather Impacted
Traffic Index,” AIAA 2007-7890, Belfast,
Northern Ireland, 7th AIAA Aviation
Technology, Integration and Operations
Conference (ATIO).

[20] Refer to
http://www.aviationweather.gov/adds/

[21] Reid, Michael, 2000, “An Evaluation of the
High Level Architecture (HLA) as a Framework
for NASA Modeling and Simulation,” 25th
NASA Software Engineering Workshop.

[22] Swenson, H. N., T. Hoang, S. Engelland, D.
Vincent, T. Sanders, B. Sanford, and K. Heere,
1997, "Design and Operational Evaluation of the
Traffic Management Advisor at the Fort Worth
Air Route Traffic Control Center," Saclay,
France, 1st USA/Europe Air Traffic Management
R&D Seminar.

[23] Refer to http://www.w3.org/TR/html5/

[24] Refer to http://www.postgresql.org/

[25] Refer to http://postgis.net/

[26] Refer to http://www.opengeospatial.org/

[27] Refer to http://geoserver.org/

[28] DeLaura, R. and J. Evans, 2006, “An
Exploratory Study of Modeling En route Pilot
Convective Storm Flight Deviation Behavior,”
Paper P12.6, Atlanta, GA, American
Meteorological Society's 12th Conf. on Aviation,
Range, and Aerospace Meteorology.

[29] Refer to
http://www.unidata.ucar.edu/software/thredds/cur
rent/tds/

[30] Refer to
http://www.unidata.ucar.edu/software/thredds/cur
rent/netcdf-java/CDM/

[31] Refer to http://www.opendap.org/

[32] Grabbe, Shon R., B. Sridhar, and A.
Mukherjee, 2013, “Similar Days in the NAS: an
Airport Perspective,” AIAA 2013-4222, Los
Angeles, CA, 2013 Aviation Technology,
Integration and Operations Conference.

[33] Mukherjee, Avijit, S. R. Grabbe, and B.
Sridhar, 2013, “Classification of Days Using
Weather Impacted Traffic in the National
Airspace System,” AIAA 2013-4403, Los
Angeles, CA, 2013 Aviation Technology,
Integration and Operations Conference.

[34] Grabbe, Shon R. and B. Sridhar, 2014,
“Clustering Days with Similar Airport Weather
Conditions,” AIAA 2014-2712, Atlanta, GA,
14th AIAA Aviation Technology, Integration,
and Operations Conference.

[35] Bloem, Michael and N. Bambos, 2014,
“Ground Delay Program Analytics with
Behavioral Cloning and Inverse Reinforcement
Learning,” AIAA 2014-2026, Atlanta, GA, 14th
AIAA Aviation Technology, Integration, and
Operations Conference.

[36] McNally, David, Kapil Sheth, et. al., 2013,
“Operational Evaluation of Dynamic Weather
Routes at American Airlines.”, Chicago, Illinois,
10th USA/Europe ATM R&D Seminar

[37] Noy, Natalya, “Semantic Integration: a
survey of ontology-based approaches,” 2004,
ACM SIGMOD Volume 33, Issue 4, ACM.

[38] Mayer-Schonberger , Viktor and K. Cukier,
2014, “Big Data: A Revolution that That Will
Transform How We Live, Work, and Think”,
New York, NY, Houghton Mifflin Harcourt
Publishing Company.

Acknowledgements
The authors would like to thank Mr. Pat O’Neal

of UC Santa Cruz and Mr. Eric Wang of GTI Federal
for their significant contributions to data acquisition,
monitoring, and database administration.

Email Addresses
Michelle Eshow: Michelle.Eshow@nasa.gov

Max Lui: Max.Lui@nasa.gov

Shubha Ranjan: Shubha.Ranjan@nasa.gov

33rd Digital Avionics Systems Conference

October 5-9, 2014

